
Silberschatz, Galvin and Gagn Operating System Concepts

Chapter 1: Introduction

1.3 Silberschatz, Galvin and Gagne Operating System Concepts

What is an Operating System?

 A program that acts as an intermediary between a user of a computer

and the computer hardware

 Operating system goals:

 Execute user programs and make solving user problems easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner

1.4 Silberschatz, Galvin and Gagne Operating System Concepts

Computer System Structure

 Computer system can be divided into four components

 Hardware – provides basic computing resources

 CPU, memory, I/O devices

 Operating system

 Controls and coordinates use of hardware among various

applications and users

 Application programs – define the ways in which the system

resources are used to solve the computing problems of the

users

 Word processors, compilers, web browsers, database

systems, video games

 Users

 People, machines, other computers

1.5 Silberschatz, Galvin and Gagne Operating System Concepts

Four Components of a Computer System

1.6 Silberschatz, Galvin and Gagne Operating System Concepts

Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for efficient and fair

resource use

 OS is a control program

 Controls execution of programs to prevent errors and improper

use of the computer

1.7 Silberschatz, Galvin and Gagne Operating System Concepts

Computer Startup

 bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally known as firmware

 Initializes all aspects of system

 Loads operating system kernel and starts execution

 “The one program running at all times on the computer” is the kernel.

Everything else is either a system program (ships with the operating

system) or an application program

1.8 Silberschatz, Galvin and Gagne Operating System Concepts

Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through common bus

providing access to shared memory

 Concurrent execution of CPUs and devices competing for memory

cycles

1.9 Silberschatz, Galvin and Gagne Operating System Concepts

Computer-System Operation

 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular device type

 Device controller informs CPU that it has finished its operation by causing

an interrupt

 An operating system is interrupt driven

1.10 Silberschatz, Galvin and Gagne Operating System Concepts

Interrupt Timeline

1.11 Silberschatz, Galvin and Gagne Operating System Concepts

Storage-Device Hierarchy

1.12 Silberschatz, Galvin and Gagne Operating System Concepts

Caching

 Important principle, performed at many levels in a computer (in

hardware, operating system, software)

 Information in use copied from slower to faster storage temporarily

 Faster storage (cache) checked first to determine if information is

there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

1.13 Silberschatz, Galvin and Gagne Operating System Concepts

Computer-System Architecture

 Multiprocessors systems growing in use and importance

 Also known as parallel systems, tightly-coupled systems

 Advantages include

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

 Two types

1. Asymmetric Multiprocessing

2. Symmetric Multiprocessing

1.14 Silberschatz, Galvin and Gagne Operating System Concepts

Symmetric Multiprocessing Architecture

1.15 Silberschatz, Galvin and Gagne Operating System Concepts

A Dual-Core Design

1.16 Silberschatz, Galvin and Gagne Operating System Concepts

Operating-System Operations

 Interrupt driven by hardware

 Software error or request creates exception or trap

 Division by zero, request for operating system service

 Dual-mode operation allows OS to protect itself and other system
components

 User mode and kernel mode

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user code or
kernel code

 Some instructions designated as privileged, only executable in
kernel mode

 System call changes mode to kernel, return from call resets it to user

1.17 Silberschatz, Galvin and Gagne Operating System Concepts

Transition from User to Kernel Mode

1.18 Silberschatz, Galvin and Gagne Operating System Concepts

Process Management

 A process is a program in execution. It is a unit of work within the system.
Program is a passive entity, process is an active entity.

 Process needs resources to accomplish its task

 CPU, memory, I/O, files

 Initialization data

 Process termination requires reclaim of any reusable resources

 Single-threaded process has one program counter specifying location of
next instruction to execute

 Process executes instructions sequentially, one at a time, until
completion

 Multi-threaded process has one program counter per thread

 Typically system has many processes, some user, some operating system
running concurrently on one or more CPUs

 Concurrency by multiplexing the CPUs among the processes / threads

1.19 Silberschatz, Galvin and Gagne Operating System Concepts

Process Management Activities

The operating system is responsible for the following activities in connection

with process management:

 Creating and deleting both user and system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

 Providing mechanisms for deadlock handling

1.20 Silberschatz, Galvin and Gagne Operating System Concepts

Memory Management

 All data in memory before and after processing

 All instructions in memory in order to execute

 Memory management determines what is in memory when

 Optimizing CPU utilization and computer response to users

 Memory management activities

 Keeping track of which parts of memory are currently being used and by

whom

 Deciding which processes (or parts thereof) and data to move into and

out of memory

 Allocating and deallocating memory space as needed

1.21 Silberschatz, Galvin and Gagne Operating System Concepts

Storage Management

 OS provides uniform, logical view of information storage

 Abstracts physical properties to logical storage unit - file

 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

 File-System management

 Files usually organized into directories

 Access control on most systems to determine who can access
what

 OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and dirs

 Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media

1.22 Silberschatz, Galvin and Gagne Operating System Concepts

Performance of Various Levels of Storage

 Movement between levels of storage hierarchy can be explicit or implicit

1.23 Silberschatz, Galvin and Gagne Operating System Concepts

Open-Source Operating Systems

 Operating systems made available in source-code format rather than just

binary closed-source

 Counter to the copy protection and Digital Rights Management (DRM)

movement

 Started by Free Software Foundation (FSF), which has “copyleft” GNU

Public License (GPL)

 Examples include GNU/Linux, BSD UNIX (including core of Mac OS X), and

Sun Solaris

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System
Structures

2.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System Structures

� Operating System Services
� User Operating System Interface
� System Calls
� Types of System Calls
� System Programs
� Operating System Design and Implementation
� Operating System Structure
� Operating System Debugging
� Operating System Generation
� System Boot

2.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services

� Operating systems provide an environment for execution of programs
and services to programs and users

� One set of operating-system services provides functions that are
helpful to the user:
� User interface - Almost all operating systems have a user

interface (UI).
 Varies between Command-Line (CLI), Graphics User

Interface (GUI), Batch
� Program execution - The system must be able to load a

program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

� I/O operations - A running program may require I/O, which may
involve a file or an I/O device

2.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

� One set of operating-system services provides functions that are helpful to
the user (Cont.):
� File-system manipulation - The file system is of particular interest.

Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

� Communications – Processes may exchange information, on the same
computer or between computers over a network
 Communications may be via shared memory or through message

passing (packets moved by the OS)
� Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user
program

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

� Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing
� Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them
 Many types of resources - CPU cycles, main memory, file storage,

I/O devices.
� Accounting - To keep track of which users use how much and what

kinds of computer resources
� Protection and security - The owners of information stored in a

multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other
 Protection involves ensuring that all access to system resources is

controlled
 Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access
attempts

2.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A View of Operating System Services

2.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - CLI

CLI or command interpreter allows direct command entry
� Sometimes implemented in kernel, sometimes by systems

program
� Sometimes multiple flavors implemented – shells
� Primarily fetches a command from user and executes it
� Sometimes commands built-in, sometimes just names of

programs
 If the latter, adding new features doesn’t require shell

modification

2.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - GUI

� User-friendly desktop metaphor interface
� Usually mouse, keyboard, and monitor
� Icons represent files, programs, actions, etc
� Various mouse buttons over objects in the interface cause

various actions (provide information, options, execute function,
open directory (known as a folder)

� Invented at Xerox PARC
� Many systems now include both CLI and GUI interfaces

� Microsoft Windows is GUI with CLI “command” shell
� Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

underneath and shells available
� Unix and Linux have CLI with optional GUI interfaces (CDE,

KDE, GNOME)

2.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Touchscreen Interfaces

n Touchscreen devices require new
interfaces
l Mouse not possible or not desired
l Actions and selection based on

gestures
l Virtual keyboard for text entry

l Voice commands.

2.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Calls

� Programming interface to the services provided by the OS
� Typically written in a high-level language (C or C++)
� Mostly accessed by programs via a high-level

Application Programming Interface (API) rather than
direct system call use

� Three most common APIs are Windows API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

2.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of System Calls

� System call sequence to copy the contents of one file to another file

2.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Standard API

2.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

� Typically, a number associated with each system call
� System-call interface maintains a table indexed according to

these numbers
� The system call interface invokes the intended system call in OS

kernel and returns status of the system call and any return values
� The caller need know nothing about how the system call is

implemented
� Just needs to obey API and understand what OS will do as a

result call
� Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built
into libraries included with compiler)

2.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

API – System Call – OS Relationship

2.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

� Process control
� create process, terminate process
� load, execute
� get process attributes, set process attributes
� wait for time
� wait event, signal event
� allocate and free memory
� Dump memory if error
� Debugger for determining bugs, single step execution
� Locks for managing access to shared data between processes

2.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

� File management
� create file, delete file
� open, close file
� read, write, reposition
� get and set file attributes

� Device management
� request device, release device
� read, write, reposition
� get device attributes, set device attributes
� logically attach or detach devices

2.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

� Information maintenance
� get time or date, set time or date
� get system data, set system data
� get and set process, file, or device attributes

� Communications
� create, delete communication connection
� send, receive messages if message passing model to host

name or process name
 From client to server

� Shared-memory model create and gain access to memory
regions

� transfer status information
� attach and detach remote devices

2.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

� Protection
� Control access to resources
� Get and set permissions
� Allow and deny user access

2.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Windows and Unix System Calls

2.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Standard C Library Example

� C program invoking printf() library call, which calls write() system call

2.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation

� Design and Implementation of OS not “solvable”, but some
approaches have proven successful

� Internal structure of different Operating Systems can vary widely

� Start the design by defining goals and specifications

� Highest level: affected by choice of hardware, type of system

� The requirements can be divided into User and System goals
� User goals – operating system should be convenient to use,

easy to learn, reliable, safe, and fast
� System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free,
and efficient

2.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation (Cont.)

� Important principle to separate
Policy: What will be done?
Mechanism: How to do it?

� Mechanisms determine how to do something, policies decide
what will be done

� The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example – timer)

� Specifying and designing an OS is highly creative task of
software engineering

2.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation

� Much variation
� Early OSes in assembly language
� Then system programming languages like Algol, PL/1
� Now C, C++

� Actually usually a mix of languages
� Lowest levels in assembly
� Main body in C
� Systems programs in C, C++, scripting languages like PERL,

Python, shell scripts
� More high-level language easier to port to other hardware

� But slower
� Emulation can allow an OS to run on non-native hardware

2.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

� General-purpose OS is very large program
� Various ways to structure ones

� Simple structure – MS-DOS
� More complex -- UNIX
� Layered – an abstrcation
� Microkernel -Mach

2.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simple Structure -- MS-DOS

� MS-DOS – written to provide the
most functionality in the least
space
� Not divided into modules
� Although MS-DOS has some

structure, its interfaces and
levels of functionality are not
well separated

2.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Non Simple Structure -- UNIX

UNIX – limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts
� Systems programs
� The kernel

 Consists of everything below the system-call interface
and above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

2.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

2.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered Approach

� The operating system is divided
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface.

� With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

� Simplifies debugging and
system verification

2.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

� Moves as much from the kernel into user space
� Mach example of microkernel

� Mac OS X kernel (Darwin) partly based on Mach
� Communication takes place between user modules using

message passing
� Benefits:

� Easier to extend a microkernel
� Easier to port the operating system to new architectures
� More reliable (less code is running in kernel mode)
� More secure

� Detriments:
� Performance overhead of user space to kernel space

communication

2.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

2.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Modules

� Many modern operating systems implement loadable kernel
modules
� Uses object-oriented approach
� Each core component is separate
� Each talks to the others over known interfaces
� Each is loadable as needed within the kernel

� Overall, similar to layers but with more flexible
� Linux, Solaris, etc

2.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Modular Approach

2.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hybrid Systems

� Most modern operating systems are actually not one pure model
� Hybrid combines multiple approaches to address

performance, security, usability needs
� Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of functionality
� Windows mostly monolithic, plus microkernel for different

subsystem

2.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Generation

n Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

n SYSGEN program obtains information concerning the specific
configuration of the hardware system
l Used to build system-specific compiled kernel or system-

tuned
l Can general more efficient code than one general kernel

2.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Boot

� When power initialized on system, execution starts at a fixed
memory location
� Firmware ROM used to hold initial boot code

� Operating system must be made available to hardware so hardware
can start it
� Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it
� Sometimes two-step process where boot block at fixed

location loaded by ROM code, which loads bootstrap loader
from disk

� Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

� Kernel loads and system is then running

