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Chapter 1: Introduction 
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What is an Operating System? 

 A program that acts as an intermediary between a user of a computer 

and the computer hardware 

 Operating system goals: 

 Execute user programs and make solving user problems easier 

 Make the computer system convenient to use 

 Use the computer hardware in an efficient manner 
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Computer System Structure 

 Computer system can be divided into four components 

 Hardware – provides basic computing resources 

 CPU, memory, I/O devices 

 Operating system 

 Controls and coordinates use of hardware among various 

applications and users 

 Application programs – define the ways in which the system 

resources are used to solve the computing problems of the 

users 

 Word processors, compilers, web browsers, database 

systems, video games 

 Users 

 People, machines, other computers 
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Four Components of a Computer System 
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Operating System Definition 

 

 OS is a resource allocator 

 Manages all resources 

 Decides between conflicting requests for efficient and fair 

resource use 

 OS is a control program 

 Controls execution of programs to prevent errors and improper 

use of the computer 
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Computer Startup 

 bootstrap program is loaded at power-up or reboot 

 Typically stored in ROM or EPROM, generally known as firmware 

 Initializes all aspects of system 

 Loads operating system kernel and starts execution 

 “The one program running at all times on the computer” is the kernel.  

Everything else is either a system program (ships with the operating 

system) or an application program 
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Computer System Organization 

 Computer-system operation 

 One or more CPUs, device controllers connect through common bus 

providing access to shared memory 

 Concurrent execution of CPUs and devices competing for memory 

cycles 
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Computer-System Operation 

 I/O devices and the CPU can execute concurrently 

 Each device controller is in charge of a particular device type 

 Device controller informs CPU that it has finished its operation by causing 

an interrupt 

 An operating system is interrupt driven 
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Interrupt Timeline 
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Storage-Device Hierarchy 
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Caching 

 Important principle, performed at many levels in a computer (in 

hardware, operating system, software) 

 Information in use copied from slower to faster storage temporarily 

 Faster storage (cache) checked first to determine if information is 

there 

 If it is, information used directly from the cache (fast) 

 If not, data copied to cache and used there 

 Cache smaller than storage being cached 

 Cache management important design problem 

 Cache size and replacement policy 
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Computer-System Architecture 

 Multiprocessors systems growing in use and importance 

 Also known as parallel systems, tightly-coupled systems 

 Advantages include 

1. Increased throughput 

2. Economy of scale 

3. Increased reliability – graceful degradation or fault tolerance 

 Two types 

1. Asymmetric Multiprocessing 

2. Symmetric Multiprocessing 
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Symmetric Multiprocessing Architecture 
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A Dual-Core Design 
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Operating-System Operations 

 Interrupt driven by hardware 

 Software error or request creates exception or trap 

 Division by zero, request for operating system service 

 Dual-mode operation allows OS to protect itself and other system 
components 

 User mode and kernel mode  

 Mode bit provided by hardware 

 Provides ability to distinguish when system is running user code or 
kernel code 

 Some instructions designated as privileged, only executable in 
kernel mode 

 System call changes mode to kernel, return from call resets it to user 
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Transition from User to Kernel Mode 
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Process Management 

 

 A process is a program in execution. It is a unit of work within the system. 
Program is a passive entity, process is an active entity. 

 Process needs resources to accomplish its task 

 CPU, memory, I/O, files 

 Initialization data 

 Process termination requires reclaim of any reusable resources 

 Single-threaded process has one program counter specifying location of 
next instruction to execute 

 Process executes instructions sequentially, one at a time, until 
completion 

 Multi-threaded process has one program counter per thread 

 Typically system has many processes, some user, some operating system 
running concurrently on one or more CPUs 

 Concurrency by multiplexing the CPUs among the processes / threads 
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Process Management Activities 

The operating system is responsible for the following activities in  connection 

with process management: 

 Creating and deleting both user and system processes 

 Suspending and resuming processes 

 Providing mechanisms for process synchronization 

 Providing mechanisms for process communication 

 Providing mechanisms for deadlock handling 
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Memory Management 

 All data in memory before and after processing 

 All instructions in memory in order to execute 

 Memory management determines what is in memory when 

 Optimizing CPU utilization and computer response to users 

 Memory management activities 

 Keeping track of which parts of memory are currently being used and by 

whom 

 Deciding which processes (or parts thereof) and data to move into and 

out of memory 

 Allocating and deallocating memory space as needed 
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Storage Management 

 OS provides uniform, logical view of information storage 

 Abstracts physical properties to logical storage unit  - file 

 Each medium is controlled by device (i.e., disk drive, tape drive) 

 Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random) 

 File-System management 

 Files usually organized into directories 

 Access control on most systems to determine who can access 
what 

 OS activities include 

 Creating and deleting files and directories 

 Primitives to manipulate files and dirs 

 Mapping files onto secondary storage 

 Backup files onto stable (non-volatile) storage media 
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Performance of Various Levels of Storage 

 Movement between levels of storage hierarchy can be explicit or implicit 
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Open-Source Operating Systems 

 Operating systems made available in source-code format rather than just 

binary closed-source 

 Counter to the copy protection and Digital Rights Management (DRM) 

movement 

 Started by Free Software Foundation (FSF), which has “copyleft” GNU 

Public License (GPL) 

 Examples include GNU/Linux, BSD UNIX (including core of Mac OS X), and 

Sun Solaris  
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Chapter 2:  Operating-System 
Structures
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Chapter 2:  Operating-System Structures

� Operating System Services
� User Operating System Interface
� System Calls
� Types of System Calls
� System Programs
� Operating System Design and Implementation
� Operating System Structure
� Operating System Debugging
� Operating System Generation
� System Boot
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Operating System Services

� Operating systems provide an environment for execution of programs 
and services to programs and users

� One set of operating-system services provides functions that are 
helpful to the user:
� User interface - Almost all operating systems have a user 

interface (UI).
 Varies between Command-Line (CLI), Graphics User 

Interface (GUI), Batch
� Program execution - The system must be able to load a 

program into memory and to run that program, end execution, 
either normally or abnormally (indicating error)

� I/O operations - A running program may require I/O, which may 
involve a file or an I/O device
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Operating System Services (Cont.)

� One set of operating-system services provides functions that are helpful to 
the user (Cont.):
� File-system manipulation - The file system is of particular interest. 

Programs need to read and write files and directories, create and delete 
them, search them, list file Information, permission management.

� Communications – Processes may exchange information, on the same 
computer or between computers over a network
 Communications may be via shared memory or through message 

passing (packets moved by the OS)
� Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user 
program

 For each type of error, OS should take the appropriate action to 
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and 
programmer’s abilities to efficiently use the system
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Operating System Services (Cont.)

� Another set of OS functions exists for ensuring the efficient operation of the 
system itself via resource sharing
� Resource allocation - When  multiple users or multiple jobs running 

concurrently, resources must be allocated to each of them
 Many types of resources - CPU cycles, main memory, file storage, 

I/O devices.
� Accounting - To keep track of which users use how much and what 

kinds of computer resources
� Protection and security - The owners of information stored in a 

multiuser or networked computer system may want to control use of 
that information, concurrent processes should not interfere with each 
other
 Protection involves ensuring that all access to system resources is 

controlled
 Security of the system from outsiders requires user authentication, 

extends to defending external I/O devices from invalid access 
attempts
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A View of Operating System Services
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User Operating System Interface - CLI

CLI or command interpreter allows direct command entry
� Sometimes implemented in kernel, sometimes by systems 

program
� Sometimes multiple flavors implemented – shells
� Primarily fetches a command from user and executes it
� Sometimes commands built-in, sometimes just names of 

programs
 If the latter, adding new features doesn’t require shell 

modification
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User Operating System Interface - GUI

� User-friendly desktop metaphor interface
� Usually mouse, keyboard, and monitor
� Icons represent files, programs, actions, etc
� Various mouse buttons over objects in the interface cause 

various actions (provide information, options, execute function, 
open directory (known as a folder)

� Invented at Xerox PARC
� Many systems now include both CLI and GUI interfaces

� Microsoft Windows is GUI with CLI “command” shell
� Apple Mac OS X is “Aqua” GUI interface with UNIX kernel 

underneath and shells available
� Unix and Linux have CLI with optional GUI interfaces (CDE, 

KDE, GNOME)
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Touchscreen Interfaces

n Touchscreen devices require new 
interfaces
l Mouse not possible or not desired
l Actions and selection based on 

gestures
l Virtual keyboard for text entry

l Voice commands.
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System Calls

� Programming interface to the services provided by the OS
� Typically written in a high-level language (C or C++)
� Mostly accessed by programs via a high-level 

Application Programming Interface (API) rather than 
direct system call use

� Three most common APIs are Windows API for Windows, 
POSIX API for POSIX-based systems (including virtually 
all versions of UNIX, Linux, and Mac OS X), and Java API 
for the Java virtual machine (JVM)
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Example of System Calls

� System call sequence to copy the contents of one file to another file
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Example of Standard API
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System Call Implementation

� Typically, a number associated with each system call
� System-call interface maintains a table indexed according to 

these numbers
� The system call interface invokes  the intended system call in OS 

kernel and returns status of the system call and any return values
� The caller need know nothing about how the system call is 

implemented
� Just needs to obey API and understand what OS will do as a 

result call
� Most details of  OS interface hidden from programmer by API  

 Managed by run-time support library (set of functions built 
into libraries included with compiler)
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API – System Call – OS Relationship
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Types of System Calls

� Process control
� create process, terminate process
� load, execute
� get process attributes, set process attributes
� wait for time
� wait event, signal event
� allocate and free memory
� Dump memory if error
� Debugger for determining bugs, single step execution
� Locks for managing access to shared data between processes
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Types of System Calls

� File management
� create file, delete file
� open, close file
� read, write, reposition
� get and set file attributes

� Device management
� request device, release device
� read, write, reposition
� get device attributes, set device attributes
� logically attach or detach devices
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Types of System Calls (Cont.)

� Information maintenance
� get time or date, set time or date
� get system data, set system data
� get and set process, file, or device attributes

� Communications
� create, delete communication connection
� send, receive messages if message passing model to host 

name or process name
 From client to server

� Shared-memory model create and gain access to memory 
regions

� transfer status information
� attach and detach remote devices
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Types of System Calls (Cont.)

� Protection
� Control access to resources
� Get and set permissions
� Allow and deny user access
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Examples of Windows and  Unix System Calls
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Standard C Library Example

� C program invoking printf() library call, which calls write() system call
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Operating System Design and Implementation

� Design and Implementation of OS not “solvable”, but some 
approaches have proven successful

� Internal structure of different Operating Systems  can vary widely

� Start the design by defining goals and specifications 

� Highest level: affected by choice of hardware, type of system

� The requirements can be divided into User and System goals
� User goals – operating system should be convenient to use, 

easy to learn, reliable, safe, and fast
� System goals – operating system should be easy to design, 

implement, and maintain, as well as flexible, reliable, error-free, 
and efficient
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Operating System Design and Implementation (Cont.)

� Important principle to separate
Policy:   What will be done?
Mechanism:  How to do it?

� Mechanisms determine how to do something, policies decide 
what will be done

� The separation of policy from mechanism is a very important 
principle, it allows maximum flexibility if policy decisions are to 
be changed later (example – timer)

� Specifying and designing an OS is highly creative task of 
software engineering
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Implementation

� Much variation
� Early OSes in assembly language
� Then system programming languages like Algol, PL/1
� Now C, C++

� Actually usually a mix of languages
� Lowest levels in assembly
� Main body in C
� Systems programs in C, C++, scripting languages like PERL, 

Python, shell scripts
� More high-level language easier to port to other hardware

� But slower
� Emulation can allow an OS to run on non-native hardware
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Operating System Structure

� General-purpose OS is very large program
� Various ways to structure ones

� Simple structure – MS-DOS
� More complex -- UNIX
� Layered – an abstrcation
� Microkernel -Mach
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Simple Structure  -- MS-DOS

� MS-DOS – written to provide the 
most functionality in the least 
space
� Not divided into modules
� Although MS-DOS has some 

structure, its interfaces and 
levels of functionality are not 
well separated
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Non Simple Structure  -- UNIX

UNIX – limited by hardware functionality, the original UNIX 
operating system had limited structuring.  The UNIX OS 
consists of two separable parts
� Systems programs
� The kernel

 Consists of everything below the system-call interface 
and above the physical hardware

 Provides the file system, CPU scheduling, memory 
management, and other operating-system functions; a 
large number of functions for one level



2.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered



2.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered Approach

� The operating system is divided 
into a number of layers (levels), 
each built on top of lower 
layers.  The bottom layer (layer 
0), is the hardware; the highest 
(layer N) is the user interface.

� With modularity, layers are 
selected such that each uses 
functions (operations) and 
services of only lower-level 
layers

� Simplifies debugging and 
system verification
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Microkernel System Structure 

� Moves as much from the kernel into user space
� Mach example of microkernel

� Mac OS X kernel (Darwin) partly based on Mach
� Communication takes place between user modules using 

message passing
� Benefits:

� Easier to extend a microkernel
� Easier to port the operating system to new architectures
� More reliable (less code is running in kernel mode)
� More secure

� Detriments:
� Performance overhead of user space to kernel space 

communication
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Microkernel System Structure 

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode
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Modules

� Many modern operating systems implement loadable kernel 
modules
� Uses object-oriented approach
� Each core component is separate
� Each talks to the others over known interfaces
� Each is loadable as needed within the kernel

� Overall, similar to layers but with more flexible
� Linux, Solaris, etc
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Solaris Modular Approach
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Hybrid Systems

� Most modern operating systems are actually not one pure model
� Hybrid combines multiple approaches to address 

performance, security, usability needs
� Linux and Solaris kernels in kernel address space, so 

monolithic, plus modular for dynamic loading of functionality
� Windows mostly monolithic, plus microkernel for different 

subsystem
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Operating System Generation

n Operating systems are designed to run on any of a class of 
machines; the system must be configured for each specific 
computer site

n SYSGEN program obtains information concerning the specific 
configuration of the hardware system
l Used to build system-specific compiled kernel or system-

tuned
l Can general more efficient code than one general kernel
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System Boot

� When power initialized on system, execution starts at a fixed 
memory location
� Firmware ROM used to hold initial boot code

� Operating system must be made available to hardware so hardware 
can start it
� Small piece of code – bootstrap loader, stored in ROM or 

EEPROM locates the kernel, loads it into memory, and starts it
� Sometimes two-step process where boot block at fixed 

location loaded by ROM code, which loads bootstrap loader 
from disk

� Common bootstrap loader, GRUB, allows selection of kernel from 
multiple disks, versions, kernel options

� Kernel loads and system is then running


